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IV. The Influence of Satellites upon the Form of Saturn’'s Ring.

By G. R. GorpsBroucH, D.Sc., Armstrong College, Newcastle-on-Tyne.

Commumnicated by Prof. T. H. Haverock, F.R.S.

Received February 17,--Read May 26, 1921.

§ 1. Introduction.

IN his “ Adams’ Prize Essay”* for the year 1856, MaxwrLL showed that the rings
of the planet Saturn could only be stable for small disturbances on the theory that
they were composed of meteorites sufficiently small. This has been confirmed since
by spectroscopic evidence and is now generally accepted. In continuance of the
same idea, the various divisions of the rings have been accounted for by presuming
that, in those positions where a single particle moving in a circular orbit about the
planet would have a period simply commensurate with that of one of the nearer
satellites of Saturn, instability would result. This idea has been fully emphasized
recently by LoweLn.T His ©observations at Flagstafl’ have disclosed a large number
of additional divisions in the rings (see Appendix to this paper). They have the
appearance of fine lines traced on the surface of the rings. 1In each case LowrLL is
able to show that the divisions occur at intervals of periods commensurable with that
of satellite Mimas. The periods have the ratios such as 2, {, %, ¥, &¢. LowELL
has stated the argument for this view in ¢ Bulletin,’ 32, p. 189. If the action of one
body upon another revolving about a third be examined by the method of the
variation of arbitrary constants, in the expressions for the periodic inequalities
in the radius vector and the longitude, there appear terms of the type
[C/(pn—gn')] cos {(pn—qn')t +Q}, where n and n’ are the mean motions of the
perturbing and perturbed bodies, p and ¢ are integers, and the remalning quantities
are constants. It is clear that when the ratio n/n is approximately equal to ¢/p,
then the inequality will become very large.

We may take a satellite of Saturn as one of the bodies and one of the particles
forming the ring as the other; if n/n’ = g/p, approximately, then the particle will

* MaxweLL’s ¢ Collecced Works,” I., p. 288.
t LOWELL, ¢ Observatory Bulletin,” No. 66.

VOL. CCXXII.—A 597. Q [Published October 13, 1921.
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102 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

depart considerably from its unperturbed path and collision with other particles will
result. In this way the divisions in the ring have been explained. v

Some doubt has been cast upon this theory, and it has been shown® that even
when n and n/ are commensurable, a closer examination of the motion leads to the
conclusion that the denominator will not vanish. v

It is also noticeable that this explanation takes no account of the attraction of the
numerous particles upon one another, which may be considerable.

A re-examination of the matter is made in the present paper. As the satellites of
Saturn are all approximately in the same plane as the ring, the problem is formulated
in two dimensions only. The satellite is assumed to follow an unperturbed circular
orbit, and the problem reduces to a slight variation of the “ restricted problem” of
three bodies. 'We shall consider the effect of this satellite upon a number of particles
forming a single ring round the planet, subject to their mutual attraction as well as
that of the satellite and of Saturn. The actual Saturnian rings ave supposed to be
composed of a number of such rings arranged concentrically. These will have some
effect one upon the other, but, for the present, this effect is disregarded.

Tn his paper, MAxwELL considered the single ring of particles only. He found
that the equations of motion could be satisfied by assuming that the particles rotated
round the primary in a circle with suitable angular motion. He then examined the
effect of a small arbitrary disturbance upon them, and his results show that the
disturbances would remain small if the masses of the particles were sufficiently small.
That is, the ring would be ““ ordinarily ” stable. :

In the present paper the plan is different. The disturbance of the ring of particles
by the satellite is examined, with a view to determining under what conditions the
departure from a certain fixed circle will be large. It is clear that if' the departures
do become large, collisions with adjacent rings of particles will result, and the particles
will leave the vicinity of the original circle irrevocably. In this case a division in
the ring will result. Tt is with this meaning that the terms stability and instability
have been used in the paper. But, as will be pointed out again in its proper place,
the orbits in which the departure from the circular form does not become great with
increase of time may yet become ““ordinarily ” unstable if further small arbitrary
displacements are imposed upon them.

The results of this paper will therefore indicate some, but not necessarily all, of the
positions of divisions in the rings due to instability of whatever kind.

In §§ 2 to 4 an analytical theory is fully worked out on the supposition of equal
particles in each ring. In §5 it is shown how amendments may be introduced to
cover the case of unequal particles. The application to the Saturnian system is given
in § 6, and the last paragraph summarises the results obtained.

* TISSERAND, ¢ Méc. Céleste,” vol. iv., p. 420.


http://rsta.royalsocietypublishing.org/

\

\

Py
/\
-
A

THE ROYAL |

PHILOSOPHICAL
TRANSACTIONS

P
\

a ¥
3

A

SOCIETY

OF

1\

/J
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

Downloaded from rsta.royalsocietypublishing.org

SATELLITES UPON THE FORM OF SATURN’S RING. 103

§ 2. Formation of the Equations.

Let M be the mass of the primary and m’ the mass of the principal satellite which
is assumed to describe an unperturbed circle round the primary. Take the origin at
M. TLet there be n particles forming a ring round the primary, subject to attraction
from M, m/, and one another, and let the mass and co-ordinates at time ¢ of particle A
be my, 7, 0, If the co-ordinates of m/ at the same time are #/, ¢/, then the motion
of particle X will be produced by forces which are the derivatives of the function

M+my m wmr ‘ m,
F= Ap L ——cos (0/—6,) + =
™ A)\ ,r/z ( A) B Dm

-3 ”Zf*?} cos (0,—6,) ;
L "

where :
AN = 742 —20"r, cos (6/—6)),
and

Dkuz = ’)‘,ﬁ + "4)\2 - 27«;}-”")\ CO8 (GIJ« - 6)\)

The equations of motion of m, are then

dry _ <91Q8‘2_.9£ ]

") = o

L laF(k.........(l)
g ) =20

7 =
7y dit e 75 00\

As we are assuming that m’ describes an unperturbed circle,

v = and 0 = ot+é,

where o”a” = M-+m/ = M, with sufficient approximation.
Let us assume now that the remaining particles are moving in the vicinity of the
vertices of a regular polygon of radius @. Then we may put

Ty = 0+ py,

0\ = ot-te+ . 277'/%-!-.0')\,

for all values of A from 1 to %, where p and ¢ are assumed small, so that squares,
products, and higher powers of them and their first derivatives with regard to the
time may be neglected. _

The equations (1) now reduce to

Q 2
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104 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

d?

D o Lo — o — 2__<8E> <_azl
de™ Zae dp T T = 073/ +§p“ 87'#80"))0

2
+2cr,‘< O'F >
0

89 a’l")\ (2)
oy o dpy /1 OF oF
9 P = (L X L
dtz + dt (\7”,\ 89)) E:P/‘ <7‘;\80“M80,\>o

o
|
+ %G}L (’) }\ao 89)\/ 0 J

In order to determine the derivatives, we write in the formula for A,, ¢, = 6/—6,,

and & = »/r’. Then

A= {1+ a*—2a cos ¢} ="
= {3by+0bycos ¢+ ... +b;cos g+ ...} =0

by FoURIER'S series.
This series will be taken as absolutely and umformly convergent.

We find then

oF _ M+4m,  m/ {liﬁ_bo ob, . } m/ :
87“/\—' ’I')k2 +74*,2 28a+...+ '8&'008’&(/)4‘... —,rTgCOS(,/)
—Sm, {“—ﬂ cos gOM——G)\) 4 cos ((-)MZ—-@,\)},
D, r,
o*F M+m, w0 .
Ep"amfio = [2 3 7 A (Fby+ ... +D;cosigp ...)
L 8(rm—r.cos(0,—0))* }]
—_ s I3 [
m“ {D)\,u,g D)\}L{)
+Sm, ‘:cos (0,— ) 4 B dm—r, cos (QIL"GA)}_}{%TA”A cos (0,—6,)}
D)\,L D)\#')
1 2eos (6, —..GA)J ”
I3
za—@—:[ (by$in gt ... +ibysin g+ ...) — "L gin g |
" Maeﬁa/}a,\ J2 8 4

—Sm [Usm(@&__eﬁ _ 3 {rm—7,c08(0,—6,)} 77, sin (6,—6,)
I " D ,u./\3 D)\;ﬁ
_ ,SiQA(,Q&:.QA)-] (5=,

2
T

/ ’ L . ) -
LB s it ) = sin g, [ OZ0) L o) |,
Ly 1y

p
n "
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SATELLITES UPON THE FORM OF SATURN’S RING. 105
o’F [m’ 0 . g e
= — (b, sin ¢+ ... +eb;sin 1+ ...
?p " r\07,00, 72, o (b Pt * ¢ )

ml

— ——5 (... +1b;sin 7g...)

A
{34”,1 sin (0, —0,) {r\—7, cos (GM—GA)}}] )
A

—2Zm,
n

' +3m, [sin (]gﬂzex) _ 3r,sin (0,—6,) %#ZTA cos (0,—6,)} -
A A

Do

mA

"

+ :r‘z? sin (9#«—0}\)} Prs
" R

! ! l
- o°F [__ uL (...»igbicosigb...)4-:—2’200393]‘7)\

T 700,00, - VRN
s, | 7c08 (6,—61) _ 8rrysin® (6,—6,)
+ e, D’ T DY
I

— %COS (G'L—G)\)] (O-M_G-)\)'
r, .
In the summations of the right-hand members, u takes all integral values from
1 to n, except u = A.
The zero values of these derivatives are obtained by putting

= d, r\ = @,
0 = o't+é, 0, = wt+e+>\27r/’}’b.

‘Whence
A2 = a”+a*—2ad cos ¢

where ¢ now is
- (w'—w) t+e’—e—7\27r/n;

and
D,, = 2a sin (u—2) =/n.
Then
M+my ,  m/ [ db db; . N o
(@Ffor)y = == "+ g/}<% d—a" + ...+ —d—;cos 1p+ ) ~ cos ¢
1 1
- 1 R
%mu JL4:0&2 sin (u—X\) 7/n + o cos (u—2) 7:'/77,} ,

Zpu( oF > = [2 (M +m,) + 2 QQ—(%Z)O+ o kb cos i+ ..)

007,y a’ a® 0o®
T S S -
w 18aP sin® (u—N) wfn 8a sin (u—n) =fn) 1™
s | €08 _(,L——A) 27 [n _ 3 2 cos (u—X\) 271'/72,]
e m"[So&'3 sin® (u—\) wfn = 8a° sin (u—2) 7[n + a® Prs
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106 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

o'F m . e . m’ . ;
o, <W>o = [(Y/Z a (bysin ¢p+...+1b;sin i¢p...) — ;B S ¢} o

dcos (u—A) wfn sin (u—2) 27:‘/77,—' -
+2m ':80& ?sin® (u—\) mfn + o ] (o=,

/

/ . . :
(L §E> = (o bibysin i) = " sin g
0

1", 00, a’o
cos (,u Na/n 1 . J
5 K - 21 5
FE [4@ sin® (u—»A) ofn o sin (=) 2=/

FF ) _[m 3 Lo
<“87N39) [ (bysin ¢+ ... +1b;sinig...)

a0 da

m oo B sin ig. ) — S |_3.¢08 (u=2A) w/n H
oz by sin g+ . +ibisinig .. Sm{ (=) wfn) 17

B 8a* sin

J ¢ A 2
+§'mﬂ[ 8;0 ;)Isn(lz,u Z\;{:;n 5 sin (u—2) 2 7r/n1 Pus

. 82F > . l: ﬂi 9 . ” 917:/ J
S, </}1}\80M89}\ s (D, cos ¢+ ... +1°D; cosig...) + o CoS ¢ | o

I

+2Zm ,: cos (u=X\) 2wfn_ 8 sin® (u—=X) 27 /n
8a? sin® (u—A) wfn  32a”sin® (u—2) 7/n

— c%; cos (u—2) 272‘/”_] (cu—a).

In the summations of the right-hand members, x takes all integral values from
1 to n, except u = A,
Next assume that all the small particles forming the ring are equal to one another.
That is m, = m. :
Further, let pr,; = Bp, for all values of .
Then
Px = paga = Bpn

B =1;

whence

or

B = cosz—%— +¢s1n2~2— where « = /(—1),

and s takes all integral values from 0 to n—1.
The quantities appearing under the signs of summation are then :

m.,
o’

3 % cos (u—2\) 2mfn = —

[

p %‘sin (=) 27[n = 0

®

p S L =K,
w 40 sin (u—N\) wfn o
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SATELLITES UPON THE FORM OF SATURN’S RING. 107

s m [cos (=—2) 27r/n {cos s (,u \) 2mfn -+ sin s (u—\) 2m[n} — 11
. 8a® sin® (u—\) m/n

3m [cos s(u— )\)27/%+LS]1’1 s(u— >\)27r/n+1]
+3 o
. 80’ sin (u—\) mfn
_em {1 cos” s (u=A) mfn _ysin®s (u—2) 7[n cos’ (n—2) w/n} __m
w2 s (=N mfn f sin®(u—2) 7/n L

m cos (u—2\) =fn
- 8a sin® (u—\) 7[n
m o cos (u— 7\) 7r/n sin s (w=X\) w/n _ mqr .
P i — M;;
‘8 sin? (u—\) wfn

{cos s (u=A) w/n+sin s (u=X) m[n—1}

=M, ;

~& 2 )b ) rf 43 =

m [oos (u—X) 2mfn _ ysin’ (u=2) 2r/n feos s (u=A\)27[n+sin s (u—2\) 27mfn—
%Saz{sin3{—k)w/n 43111{—)\)#/ }L (i )\)2/—}\ ;(M \) 2wfn—1}

My {1 sin? s (u— >\) 77'/’}7, cos® (u—>2\) =fn 41 sin? s (u—2) w/lﬂ _m

E

2 s*

B sin? (u—2) =/n Y gin (=N wfn | o

" The quantities K, L,, M,, N, can readily be found by direct summation when n, the
number of particles, and s are known. '

In re-writing the differential equations (2), we may now omit the suffixes of p and .
Change the independent variable from ¢ to ¢ = (o' —w)t+e'—e—\. 27[n. Also put
mIM = v, /M =V, o=+, (=1)" =k, and, to secure homogeneity, replace
p by ap. Let us further assume that '’ = M, and o”a” = M (the latter holds very
approximately when m’ describes a circle), so that we have afa’ = (ufw)™.

The differential equations then become

3; 2x% = k4 éa_o:(zb 4o b cos ip+ .. ) —Kitv—i " cos ¢ | )
[3 2k ’”%(%bﬁ...-kbicosz'¢-+...»)—xﬂyLs]p
+ -[xzx”/«w’ —;a— (b, sin ¢+ ... +1b; sin L+ ... — sin ¢) + xgst] o
and -
2 dp _ s p . G e ;3 Py SEEINC)
%+2K% Vi (by sin g+ ... +1b; sin i+ ... ) =i sin ¢

+ | Vi e ( +z’§éisin i+ > — /B (.. b sin i+ ...)
L do
- VKZLMS] p

+ | =T ( +122b; cos tp+ .. )+V' %? cos ¢ + N‘l
L



http://rsta.royalsocietypublishing.org/

A

/—%

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

108 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

The equations (2) may be replaced, under the suppositions made, by equations (8).
Equations (2) form a system of » pairs of linear equations of the second order. The
complete integral will therefore involve 4n arbitrary constants. The system of
equations (3) will give the same result, for the solution of (3) will be a function of s
involving four arbitrary constants. By giving s its n values, 0, 1, 2,..., (n—1), we
arrive at the complete integral involving 4n arbitrary constants.

Now it has been shown by TisserRAND* that for large values of n, whatever the
value of s may be, the limiting value of I, is 0°01947% N, = 2L, and M, = 0.

These values largely simplify the discussion of the stability of the system.

Lastly the equations (3) may be written, for convenience, in the form

N

o =20 + (0, 0+6,,008 p+ ... +0; ,cosr ¢p...)p
+ (0, 8N ¢+0, , 810 2¢p+...+ 0, sinrd+...) o
=0;,+0;,c08¢+ ... +0,,co8rp+ ...

o+ 2kp + (0,80 p+O, , 80 29+ ... +O,, sin v+ ...) p
+ (05 ,+0;,008 g+ ... +0;,c087¢+ ...) o
=6;,8n ¢+ ... +O,, 80 7¢+ ...

The values of the quantities O are :

2

s 12 02D
0, , = — 3" —3/i* —8&—; + Ly ;
. 2
2 19 a.'[) .
9177, = —VIK ’, ‘é;‘zj s (7" ?—"O)
y,., 0D,
0,,=  —/i L2 ;
do
ab
931 0 = %1/%2/(/4/3 _ocg —w’K N
ob ’
0. — il 901 r 2 s
3,1 K o VKK > L ( 5)
ob
63,r = llllczl(‘”/3 éJ 5 (’l" # O, 1)
o
ob
84,1' = — i by Z;I + lezlc/z/g?'br ;
ea,o == —I/ICst ;
0, = Vil D, s (r#0)
em = V,K2I€/2/37"b,- ; (7, =1 )
96,1 = V,K2K,2/3b1"‘l//l€2l€”/s . J

* ¢ Méc. Céleste,’” vol. ii., p. 184.
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SATELLITES UPON THE FORM OF SATURNS RING. 109

The best methods of determining the values of b,,- and its first and second
derivatives for known values of a, or afd/, are given by Trsseranp.*  The complete
evaluation of a number of these quantities for various ratios, applicable to the solar
system, is given by Poxrtiicournant.t  For the purpose of estimating the order of the
numerical values of the quantities O, ,, we may take the highest ratio « likely to
occur as that of the outer edge of the ring to the mean distance of Mimas. This
ratio is 07461 (see Appendix for data). PoNrTicourant gives the values for
a = 072333, which we may use to avoid laborious calculation. If we take / = 7. 1075,
the value for Mimas, we find

0,y = —20°2590 + 675301, ;
O, =—1385.107% O, =-153.107"  O,,=-163.10""...;
0,, = —4'07 .1077, Oy, =—739.10"7, 0,,=—934.10"°...;

0,0 = —1'46.10-7=179. 107K,  ©,, =4'07.107",  ©O,,=369.10"...
0,, = —13'5060,L,

i

It is clear that, compared with 0,4, all products and squares of the remaining 6's
may be neglected. v

§ 3. Solution of the Equati-ons.
(@) The complementary function.

The equations
P! =2k’ + p20O, , cos ¢+ 020, , sin rp = 0, (6)
o+ 2;(/)/ +p294‘r sin re+ 0'265, » COS 7¢p = 0.
belong to the class of homogeneous linear differential equations with periodic
coefficients. The integral is krown to be the sum of the forms ¢”*f (¢), where f ()
is a periodic function of ¢ with the same period as the coefficients in the equations (6).
Equations of this form in one dependent variable have been discussed by WHIrraxeg,]
Youne,§ Incg)|
of these writers.

Let

and BARER.T The present solution is a simple extension of’ the work

p = A,
o = X,

* ¢ Méc. Céleste,” vol. 1., p. 270, et seq.
T ¢ Systeme du Monde,” vol. 3, pp. 353-376.
1 “Proc Inter. Congress Math.” vol. 1, 1912 ; ¢Proe. din. Math. Soc.” xxxii., p. 76.
§ ¢ Proc. Iidin. Math. Soc.” xxxii., p. 81.
I “Monthly Notices R.A.S.” Ixxv., b, p. 436.
4 H. F. BAkur, ‘Phil. Trans.” A, vol. 216, p.- 129.
YOL. CCXXIL.—A : R
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110 DR. . R. GOLDSBROUGH ON THE INFLUENCE OF

where A and X are, as has been: said, purely periodic funr'tlon% of period 27. On
substituting in equations (6) we find

A+ 2cA'+ A7 =2k (e X+ X') +AZ0O, , cos 7¢p + X2, , sin r¢p = 0} )

EXA+2eX + X"+ 2 (cA+A) + A2O, , sin r¢ + X20O, , sin r¢ = 0

Let us now assume that A and X can be represented in the most general way by a
series of terms in © with suitable coeflicients, the coeflicients being periodic functions
of ¢ with period 27. That 1s, let

A = A sin (np—7)+33A, 0, ,+3333B, sty

79]97

X = X, cos (ngp—7)+32X, 0, ,+3333Y, ., .60, .0, ,+....

In these expressions A, and X, will be arbitrary constants, = is an arbitrary
integer® and + a parameter which will be defined presently.
We shall assume that the index ¢ is of the form

¢ = 23c, O, ,+3332d, .., .0,.0,,
Then, if we substitute these values in equations (7) and equate to zero those terms
which do not involve any O except O, , and 6, ,, which are large compared with the
others, we find

{1(0y,,—7n") Ay+2enX,} sin (np—7) = 0, »
[2en Ay +(0,—1%) Xy} cos (np—7) = 0. | ~

On eliminating A, and X, we find
(01,0—1) (O, =) —d’n* = 0.. . . . . . . . (9)

In general, the given values of 61,40 and 6, , will not satisfy the identity (9) for any
integral value of n. Let us replace Oy, by a,, where a,, is a quantity which
satisfies the relation

(. y—12) (05 y—12)—4* = 0. . . . . . . . (10)

For some suitable value of 7, it will usually be found that e, , approximates closely
to Oy,

Following the method of WaIrTaAKER previously referred to, let us now assume
that

(0,.0—1%) (85,y— 1) — (a01,0—1%) (O5,,— 1) = 2301, O, 422220, 0,0, 4
or .

2
810_n+940 = ; +33a,.0, ,+33350, .. .0,.0,, .. . . . (11)

* The use of 7 is to be distinguished from a former use where it referred to the number of particles in

the ring.
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SATELLITES UPON THE FORM OF "SATURN’S RING. 111

We now substitute the assumed values for A, X, ¢, 0, , in equations (7) and equate
to zero the coefficients of each termin 6, , 6, , 6, , &c. 1t will be found that the

» g
relations (8) are satisfied identically. Two conditions further must be imposed in

order that all the unknown coefficients may be determined. These are :

(1) The term cos (n¢—=) must not appear in the series for A ;
(i1) The solutions for A and X must be purely periodic with period 2.

The condition (i) amounts to a definition of +, and condition (ii) secures that no
part of the exponent shall appear in the periodic series. Further, these conditions
determine uniquely the undetermined coefficients in the series for O, , and ¢. The
work from this point is purely mechanical though long. The following sample
sufficiently indicates its character.

On equating to zero the terms involving O, , we find

© 2¢, ;A cos (ngp—r)+ A" ,—2e, X, cos (ngp—r)
=2 X/} g Ay Ay sin (ng—7) + A, cos ¢ sin (ng—r) = 0 &+ (12)
—2¢, n X, sin (ngp—7)+ X", +2cc, Ay sin (ngp—7) +2cA’, ,+6; X, , = 0
In the case when 7 is not 2n or 7, it is clear that
¢,=0 and a, , = 0.

Equation (12) then reduces to

A" = 26Xy oAy 4 3 A [sin {(n+7) g—7) 4 sin {(n—1) p—7}] = 0 (19)
XH] o 2KA,1,7+ 65,0X1,r =0 .

Solving in the usual way we find

_ A {(n 7P =0, ) sin {(n+r)p—7} A {(n=)"=Oy.} sin {(n—=r) p—}

Aur = 27 (21 +7) (ay,05,0—1* (n+7)?) 27 (2n—7) {a, 05, ,—71* (n—r)?}

X o A (n+7) cos {(n+7) p—7} N Ag’c (n—1r) cos {(n—7r) p—7}
P 0 (204 7) Ly 05 0—nf (nr )t v (20—7) {05 0 —nF (n—1)*}

In the special case where » = n, we have

cl,w = O; al,n = 0>
and : |
A" =2, X b oA+ EA, {sin (2ng—7)—sin T} = 0, (14)
X/,l,')z+2KAll,o7 + 65, OXI,oz = 0.

From which '
A, (4’/'&2 -0, 0) sin (2%95 —7) + A,
6 (41@4-%,065,0) 201,

Al,w. =

sin T,

and

X -z kn A, cos (2n¢p—r)
PETS Ant—ay 05,
R 2
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112 DR, G. R. GOLDSBROUGH ON THE INFLUENCE OF

Again, in the special case where » = 2n, we find in place of equations (12), the
following
20y, 0,10 008 (np—7) + A} 5, —2ke, 5, X, cos (ngp—7) —2cX ,
bty oAy gyt o, Ay sin (ngp—7) + 1A, {sin (3n¢—7) — sin (ngp—r) cos 27
— cos (ngp—7) sin 27} =

- 26‘1, 2nw’X0 Sjl] (72'¢ - T) + Xl,l,?n + 2’(61, f?nAO Sin <7Z’¢ _”T) + ZKA'/L 2n + 65. (IXI, o
- In order to avoid the explicit appearance of ¢, we must have
— 1 ¢
9, = 5 COS 27

Since we have already stipulated that A must not contain any term in cos (n¢—-),
¢1,5, must be so chosen as to make quantities involving cos (ng—r) annul.  Hence we
must have :
. 12¢, 0,1y~ 2x0, 5, Xy—%A, sin 27} cos (ngp—7) —2/X7, ,, = 0,

1 =2y, 0,0 K+ 2c¢; 0, Ay} sin (ngp—7) + X, +0, X, 5, = 0.

(16)
Whence

7 (O5,,—n") sin 27
4 (ay 05 o—n*)
X, =1 (P —ay,0) (O50+n%) sin 27A, sin (ngbr:—rr)"
- ' KT (“1.095, o—17*)

cl, om

To the value for X, ,, must be added the further particula solution arising from
the term $A, sin (3n¢g—r) in (15). Tt is

AL = (05.,—97%) A, sin (3ngp—r)
b 16 (v, 05, o— 97") ’

X . - 3nkA, cos (Bnp—=) -
1,20 7 4 ’
8 (aty (0, —9n*)

Proceeding in this way, we have the following results :—

Terms not wnvolving argument © :

In A
, A, sin (ng—r).
In X
X, cos (np—r).
In ¢
None.
Also ,
: 2enXy = — (a, ,—n?) A,,
when -

o = 12+ 42 (O; , —n?).
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Terms involving argument O, ,, where v 18 not n nor 2n.:

al,r = 07 Cl,r = O)
/

A2 {(n+ry =0, sin{(n+r)p—7} | Ag? {ln—r)—64,} sin {(n—r) p—7}
2 (2047) (g, O5,0— 0 (n+7)) 2 (2n—7r) {a,, 05— 1 (n—r)*}

A],r = -

3

AP (n+7) cos {(ntr) p—7} N AP (n—7) cos {(n—7r) </)——1-} '
7 (20 +7) Lay 05 g1 (1)t 7 (2n—7) {ay 85 0—n* (n—7)"}

Xl,r +

Terms involving argument O, ,:
(I/],n = O> Cl,% = 07

A = A —0,) sin 2ngp—7) | A,sinz

10 T * : |
6 (4n'—a, 10s.0) o

< - 2k A, cos (2ng—)

M, 7T 3 (47{,4——"(‘(/1’06)5,0) .

Terms involving argument Oy g, :

1 . n(8,,,—n)sin 27
by 9, = 3 COS 27, Cion = (00,0, o—11")
- 1,050 -

3

(65,0 —91°) A, sin (3719‘[3 _.'..T,)

A\,Qn = ]6 ((41;06510__977/4) s |
X, ., = 3nkA, cos (3ng—r) | (77,2__.(01,0) (05, 4—77) sin 27A, sin (ng¢—7)
Ay o T T e A '

8 (et,, (05,0 —97*) 8k (b, (05, 0— 97*)

i

Terms involving argument O, ,, where v 1s not 1 nor 2n .
“2.1' = 09 c2,r = 07

A o 00— (ut e Xosin {(ndn)g=rf | #*{050— (n=7)'y Xy sin {(n=r) p—7}
" 41 (1) Ly, O5,0—107 (4 1)} a1 (n—r) {ay,05,0=1 (n—7)}

5( _ Xy’ (n+7) cos {(n-+7r) gb——ﬂ:} " X2 (n—7) cos {(n—;r) ¢——-;}_ ‘
217 o (nr) Lay, 05, 0— 1 (n+7)*} 27 (n—71) L0, 0s g —0* (n—7)*}

Terms involving argument O, ,
az,n = 07 02,17 = 07
X, (05— 4n*) sin (2ngp—) _X,sin 27
6 (ay D5 0—4n") 208,

_ 2Xkn cos (2n¢p—r)
3 (@1,095,0‘4”'4) .

A2, T =

X?, n T

3
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114 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

A.S,r =

X

Terms wnvolving argument 6, ,, :

K7, cos 27 R ki’ gin 27

9 3 2 T G o >
0, ,—n’ 2 (n'—y O95.0)
A = (65,,—91%) X, sin (3ng—)
" 90t —ay, Os.0

g on = —

’

2y 2

X - 3cnX, cos (3np—r) (8, ,+n°) enX, sin 27 sin (np—)
2, 2n B

8 (9t —a, 0;.0) * 2(6;,0—1?) (1 —ct; 0.

Terms involving argument O, ,, where v is nol n nor 2n:

C4,’r = O) ([/4,1' = 07

A = AP (n47) sin {(n+7) p—r} + AP (n—r) sin {(n—7r) p—7}
4,r T

r(2n+7r) {a, O —n* (n+1)} v (2n—r) {ay,O;,—n* (n—r)}’

X = A {(n+r)P —a,,} cos {(n+r)p—=} A {(n—r)—a,,} cos {(n—r) p—7}
4, T N

5,

27 (2n+7) {a, O, —71° (n+7)*} 27 (2n—7) {a, 0, o—n* (n—17)*}

Terms involving argument O,

04,71 = O: a4,n = O:

A, o 2mxAgsin (21 —7)
e 3 (001, 09;,0—4n*)

X, = Av(dn*—ay,) cos (2ng—7) A, cos~
b 6 (a1 (O o—4n*) 20,,

Terms involving argument 6, ,, :

Terms tnvolving argument ©

r =

0. T 008 27 S 7 sin 27

4, 2n 65,0_‘%2 i 4, 2n 2 (01,065,()"‘77’4)’
A, o SenAysin (3np—r)

e 8 (ay, o050~ 97*) »
X = (9n*—a,,) A, cos (3np—r) N A, cos 27 cos (ngp—r)

b 16 (cty,00;5,9—97*) 2(6;,,—n?)

+ (0,0 +7”) sin 27A, sin (ng—r)
4 (al,ues.u"’n4)

when 1 18 nol n nor 2n :

5,71
06,7' = 0> a’;’w,r = 07

X’k (n+7) sin {(n+7)p—r; X’ (n—7) sin {(n—r) p—r}

r (2n+7) {a, O; —n* (n+r)’t  r(2n—r){a,0; ,—n* (n—r)}

_ X (0P} cos {(ntn) pr} Xt {(n—r)—ar} cos L(n—r) g~}
2 (20 +7) {a, 05 ,—n* (n+7)} 20 (2n—7r) {a, O; ,—n* (n—r)*}
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Terms tnvolving argument ©, , :
s, = 0, ¢, =0,

3, M

2Xx2n sin (2np—7) X, cos T

Ae’), n =

3 (a11,005,y—4n") 26;, '
X - X, (4n°—a, ,) cos (2np—r7)
son " .
b (601’065,‘0_ 47]/4)
Terms wmwvolving argument ©; ,, :
_ (ay,—n”) cos 2+ n (a, ,—n?) sin 27

aé, o =

2(0;,—n°) KL 4 (ay, (Os,0—nt) ’

A = SreX, sin (3n¢—7)
5,2n 8(977,4—-661,095,0) ’

9(n’—a, ,) X, cos (3n¢p—r) N (ct,.,—n?) cos 27A, cos (ngp—r)

X., = -
5,2n 16 (977/4 — b, 085, 0) 4r1 (65’ 0—77/2)

 A{ay g+ 0?) (ay,—n?) sin 27A, sin (n¢—r)
8/('771 ((ILO@{%,O'—’}’L(‘) )

Terms ihvolving powers products of the ©’s follow in similar fashion.
If we summarize the parts specially required, we find

(0,.,—12) (0, ,— %) = 402+ % (05 ,—1?) €08 270, 5, — 1 COS 27O, 5,71 COS 276, 5,
— % () o —n) €08 270; 5, +.n s . . (17)
and '
2¢ (cty 005,0—1") = 51 (0;,,—7%) sin 270, 4, —kn” 8In 276, 5, + 11’ 8in 270, 4,
—3n (ay, o—n?) sin 2705 5 +...5 . . (18)
where, as already stated,
' (aty,y=12) (O;,0—n?) = 4’0,

It is necessary to examine the expressions just obtained in order to see whether
the complete integral of equations (6) has been found.
The integer # is determined so as most nearly to satisfy the relation

(81‘0"‘”2) (65‘0""7&2) = 4’(2’//?/2,7
when
0, 05, and « are known,

The negative value of 7 will also satisfy this relation.

On solving equation (17), for each value of 7 there will be, in general, two values
of 27, equal and opposite in sign. So that altogether there are four distinct values
of 2+ obtainable. Kach of these with the corresponding value of n will give a


http://rsta.royalsocietypublishing.org/

VA\
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

3

\

N

y i
///

A

a

5

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

116 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF

different value of ¢ on substituting in equation (18), and different values for A and X.
Hence there are four distinct solutions and these when multiplied by arbitrary
constants will give the complete primitive of equations (6).

(b) The Particular Integral.

We have now to determine the particular integral of equations (4). We shall assume
only one general term on the right-hand side.and take the complete solution as the
sum of a series of the corresponding solutions. The equations may therefore be

written
P =20’ 4 pRO, , cos v+ o0, , sl re = O, et (19)
o+ Zkp’ 4+ p2O,. ., S0 ¢+ 020, , cos ¢ = 0.
Assume ‘
p= (/,LquA"r/s
and |

o = "X,
where X and A as before are functions of ¢. On substituting in equations (19) and
reducing, we find '
—mPA 4+ 20m A+ A = 2 (X +X') 4+ AS0, , cos r¢-+ X260, , sin r¢p = 50, ,, -
—m2X 4+ 2om X+ X" + 2 (amA + A') + ASO, , sin ¢+ X350, , cos rp = 0.

(20)

As a solution we now take

A=A +22A, 0, +2223B, . ,,0,.0, 4 ...,
X = X,+22X,.,0, ,+2332Y, . 0,.0

8Py 1),/1'+‘ sese

In these summations all the ©’s in the coefficients of p and o are to be included
except 0, , and 6,, A, and X, are constants, and the other coeflicients functions
of ¢. ' . -

Now substitute these expansions for A and X in (20), and equate to zero the terms
involving no 6 except 0, , and 6, ,, We then have

— Ay —2cem X+ 0, Ay = 50, .,

-—m2X0+ 2eem A+ 6, X, = 0.
Whence
A, =130, ,(0;,,—m®) + {(0, ;—m?) (05 ,—m®) —d*m?},

X, = —kmB,, + {(0, ;—m?) (0 ,—m?) —dm*}.
Next, taking the coeflicient of 9, ,, we have the equations
—m*A, L +20mAy  + Ay =2 (X, + X L) 60, 0A, o+ A, cos g = 0 (21)
=X, 2em X A X 4 26 (mA, A L) 0, X, =0 ‘ o

* The use of m here to represent an integer is to be carefully distinguished from its previous use to
represent mass. -
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We shall form the solution by taking only ¢* in the term cos r¢. Changing the
sign of » will then give the other part: Assuming that A, , and X, , vary as e, we

have
Ay, (—mP=2mr—124-6, o) — 2k (m+7) X, , = —FA,,
- . . : : (22)
A, (o 47) 2+ Xy, (—m*—2mr =1+ 6, ) = 0.
From these
AL == {650 (mA )t +1{6,,— (m+2)?} {6;,,— (m+7)*} — 4 (m+7)?],
and ,

X,, =+3A,. 2c(m+7)+[{6;,,— (m+9"):2} {85,0— (m+7)} —4e* (m-+7)2].

On determining the corresponding values for the term ¢~ and combining the two,

we have

A= —FAe? {,95,0— (m+"')2} +[{6,0— (m +"'>2} {6;,0— (m+"')2} — 4 (m+7')2:| ]
— 1A, o —(m—r)} +[{0, = (m—7)"}{0; ;— (m—7)"} — 42 (m—7r)],

X, , = A (m+r) +[{0,,— (m+7)} {6; ;— (m+r)"} — 4 (m+7r)?] |
A lm—r) [0, (=)} (O (m—r¥l = (m—r¥) )

Expression (23) shows that A, , and X, , are factored by A,, which is a multiple of

0,,. Now the terms in the expansions of A and X that we are seeking are A, .0,
and X, ,6;,. Since both of these involve the product 6;,6,,,, it 1s clear that they
may be neglected in comparison with the values of A, and X,
1
2
in the right-hand member of the second equations (4). These can be written down
from the results already given, and are

We have further to determine the parts of A and X arising from a term - 6 e

XO = %— 66, m (65, 0—')%2) —:" {(91, 0-——77?/2) (95)0_"77?/2) - 4/(2’)7?/2},
L
AO = K’}’}’Le& m - {(91, 0 __m2) (65’ ) —-77’212) - 4K2m2} .
Hence to the degree of accuracy we are using, we may summarise the results as:

p = 2 [0, (0 ,—m?) cos mep -+ 2cmO, ,, cos m]+[(6,,,—m*) (65 ,—m’) -—4x2m2],}

o = 3 [2mO,,,, sin me + 6 ,, (05,,—m?) sin m¢]=+[(6,,0—m’) (05, ,—m?) — d’m?].

Except when the denominators are small, it is seen that, owing to the very small
factors 6, ,, and 6, ,,, the values of p and o derived from the above equations are very
small.

VOL. CCXXII,—A, S
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§ 4. Discussion of the Solutions of the Equatwns Jor the Case of Equal Particles.

(i.) The complementary function.
Equations (17) and (18) which determine the value of the exponent ¢, may be
re-written here, '

(61’0_7}12) (95’0—‘72/2) = 4K27L2 + {%(65, ()""ng)elyg"‘ }
O;, 5, cos 27

(25)
- K7’2,621 o T Kne«l, mT % (a;l, 0 _72'
2¢c (“1,095,0—'“4) = {%n (65,0"”2) O, 5= K070y 5, \F (26
' +K77/264, 2n'—%n (“1,0_7?/ ) 5, 2:1} Sln 2T -

In these @, , is determined by the relation .
(r,0—17) (0;,y—n’) = din’.

It is noticeable that the coefficient of sin 2+ in (26) is n times that of cos 2+ in (25).
Owing to the smallness of the quantities © (excepting O, , and 6, ,), it is clear that
the coefficients of cos 2+ and sin 2+ are both very small quantities. Now real values
of ¢ are only given by real values of =, and conversely. Hence in order that (25)
may give real values of = it is necessary that the expression

(B1,0—12) (05 —n?) —de®n® . . . . . . . . (27)

should be less than, or at most equal to, the coefficient of cos 2r. That is, the real
values of ¢ will be in the vicinity of these values of « that make (27) vanish. The
actual limits of the zone in which real values of ¢ are found will be given by

(61, 0 _‘7@2) (85, 0‘”2) = 4’0’ + {%‘ (8@, o‘_n2) 01,0, T 61O, 5, + K10y 2n_% (al, 0~ ”2) O, 2n} . (28)

There are four groups of signs possible in this expression, and there will result four
values of «. The outermost and innermost of these will define the zone in which
some real value of ¢ appears, and this zone will be the zone of instability. Owing,
however, to the extreme smallness of the coefficient of sin 27 in (26), it is clear that ¢
will be extremely small, in general ; that is, the modulus of instability will be small
and departire from the zone will be slow. In one case, however, ¢ may be quite
large. That is, when the coefficient of ¢, @, 0950~—n is exceedingly small.

Fach of the quantities O is a function of ——, or of x. Further 6, , and 6, , involve
@

both the mass of the particles and the number of them. Both of these are entirely
unknown. All that can be said is that MAXWELL'S criterion,® that is,

<2,
P

* TISSERAND, ¢ Méc. Céleste,” vol. ii., p- 184,
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where » is the ratio of the mass of a particle to the mass of Saturn and p is the
number of particles in the ring, must be fulfilled.

v appears in the expressions for 6,, and 6,, in the form vL,. It has been
mentioned that L, < 0°0164n® for all values of s. Hence v, < 0°0194w® For the
present we shall regard v, as a variable parameter and discuss the solutions relative
to this parameter.

In order to locate the zone of instability, we equate expression (27) to zero.
Writing it in full, but omitting the term involving v, which will be exceedingly
small and will hardly affect the result, we find

{(8—vLy) @ +n’} {2 L+ —4'n® = 0. . . . . . . (29)

This equation, regarded as involving an unknown quantity 7°/c*, is precisely the
equation used by MAXWELL to determine the condition of stability of the ring of
particles when unperturbed by any satellite. The condition of the reality of »°[c’
leads to the upper limit for » just quoted. In our problem we may take the unknown
quantity as «*/rn’, and then assuming a value for vL, solve the equation. The values
of « (for differing values of %) will give the position of the zones of instability of a
ring of particles of mass and number assumed. Or, conversely, taking a position of
instability, as shown by telescopic observations of the ring, we may determine the
corresponding value of »L,, which establishes the order of value of the mass and
number of particles at that point. :

I have found that the latter process leads to no satisfactory result, and hence T do
not record the work. '

It 1s interesting to examine the meaning of the condition previously referred to,
that the maximum instability is found when (@, 0, ,—n') is approximately zero. On
referring again to equation (28), it is clear that the broadest zone of instability
will be found, owing to the extreme smallness of the last member, when
(0,,y—7%) (8;,y—n") —4®n’® changes most slowly with «. This will occur when the
equation (29) bas equal roots. Equal roots appear when, by the variation of the
parameter vLi, «fn passes from real to imaginary values, or when*

v, = 0°039.

This is the upper limit of the criterion previously quoted from MAXweLL, and
would imply that all the particles were of such mass and number as to be on the
border-line of instability. ’ A

When vL, has this value, we find that

21/Ls (3—VLS) K*—=nt =0 5
or
0, .0, ,—n* = 0.

* TISSERAND, loc. cil., p. 183.
s 2
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Whence, by (11),
,005,0—1" = =6, {zzar,ser,s+ cee b

This right-hand member is of the same order of value as the factor of sin 2+ in (26).
In this case, then, ¢ may assume a high value. But it is noticeable that only at the
limit of MaxwrLL's relation is great instability to be found.

When expression (27) has a value far from zero, either by virtue of the value of
«fn or the value of yI,, it is clear from (25) that 2+ is imaginary and hence ¢ is
imaginary, the solution being stable.

It might be inferred from this that if' values of »L, were chosen such that
MaxwerLr’s relation were not fulfilled the effect of the satellite would be to stabilise
what would otherwise be an unstable system. As pointed out already, however, the
original equations and their solutions, as given here, simply give the motion of the
particles in the vicinity of certain circles. In some cases the motion may be such
that the particles depart rapidly from this zero civcle; this we have termed
instability. In other cases the solutions may indicate that the particles never move
far from the zero circle ; and this type of motion we have termed stable. But it is
clear that if a small arbitrary displacement were given to each of the particles in the
latter case, nothing in this paper precludes the possibility of their departure finally
from the zero circle. That is, they may be again unstable. What we have found
here is a series of orbits for the particles when subject to the attractions of Saturn, a
satellite, and one another. Those in which the particles have large inequalities result
in collisions with the neighbouring rings of particles and hence a complete departure
from their former positions. Those which have no large inequalities and hence avoid
collisions with neighbouring rings of particles may yet prove unstable when an
arbitrary disturbance is further imposed upon them.

(i1) The particular integral.
In the expression (24) there appears a denominator of the form

(01,0=m3) (6;,—m?) —dfm?. . . . . . . . . (30)

Here m takes all positive integral values including zero. When the conditions are
such, therefore, that expression (30) is approximately zero, the term in the particular
integral will become very great and departure from the orbit will result. This
expression is the same as (29), which, it has been pointed out, gives the positions of
the unstable solutions of the complementary function. It may therefore be said that
all the unstable positions are in the vicinity of the zero values of (30), and the -
following remarks apply equally to both parts of the solutions.

Referring to the form (29) it is seen that there are two variables, «/n and vL,. For
a given value of v there are in general two values of «/n, and for a given value of «/n
there are two values of vI,. In the figure (p. 125), the relation between «/n and vk,
is shown graphically, only those values of vL, which satisfy MaxwuLr’s criterion being
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SATELLITES UPON THE FORM OF SATURN’S RING, 121

chosen. Tt will be seen that «/n increases slowly from unity as vI increases from
zero, until vL, reaches the value 0°039. At this point the curve turns back and rises
rapidly to an asymptote at vL, = 0. ’

In the case when expression (80) is exactly zero, it is seen from elementary principles
that the independent variable ¢ would appear explicitly. With passage of time,
therefore, p and o would increase linearly in magnitude and there would be complete
departure of the particles from the vicinity of » = a.

§ 5. Case where the Particles forming the Ring are of Unequal Masses.

The previous equations (2) were reduced to the form (3) on the supposition that all
the masses m, were of the same value m, = yM. We now proceed to the modifica-
tions introduced when these masses are all distinet in value.

Equations (2) with the same reductions as before, but maintaining the separate
values m,, become : ‘

p\— 20\ = 2/’3»’J d ( oo+ b, CO8 1p+ ...) = cos gb}‘ — "y

2
[SK‘ + i i)(l)laz (%7)0 + ... +0; cos Z(}S + .. ) - KzF)\_J pa-t EK2G,,,, APu
: "

+ [K‘2K/4/3V/ glo—l-(bl sin o+ ... +1b; sin 7:¢+ .. ) — %"/ sin P—xK HA] o
o
-i-21c2z]‘,h)\a',,L ;
o\t Zlcp/;\ = /i (bl sin ¢+t ... +1b; sin ’&gb + .. ) — V"™ gin ¢+ 7 DAY
1 2 14 'db‘t . . ) 2 . . .
M ROL R S R (... +2b;sinig...)
! ao .
_K2F/)\J T -+ ZKZG’M, AP
I

+ [-— Vi ( R igbi cos @(j) + . ) +/k%® cos ¢—K2H/)\] oA

+ 2K2J/M, AT e
M
In these equations

3 M 1 -
E, = }; i {4 e Y- + cos (u—2) 27/?%},

1 3 1
L —= ,
R ErT sy TR pryp
_ my [cos (u—=2) 27/n 3 IRV }
G M 1850 (e w/n+sin(,u—7\)7r/n 2 cos (u—2A) 27w[n p»
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: cos (u—\) =/n Lo }
H, = % i {8 Sin? () ofn +sin (u—2) 27,-/n' >

v, [ cos (u=N)w/n | .o :
Jon = TR PN + sin (u—2) 27;-/11}»

W, = [ cos (,u \) w/n

. o 1
M |Zsm ¥ (o) 7/ —-Sm_(ﬂ—ﬁ\) Z7{'/’/lj:

Il

oo s { 3 cos (u=\) 7[n|
A

M 8 sin® (u— NEO

;oo_my, cos (u—\) w/n - }
G\ = i { S an® (e x) o +2sin (u=2A) 2xfn ¢

T L, jcos (,u N) 2wfn o sin® (u—A) 2xfn ) 9 i
Hh = % M [8sin® (u—2) wfn S (u—N) wfn (=) 2rfre

3 G2 . :
7o ﬂ&{ cos ('M—A) 2afn 3y sin (u=X\) 2afn —2\) 2 fs } (32
SETM L8 sin (u—A) wfn sin® (u—N\) =fn €08 (=) 2o/ (32)

These equations may be written, with a slightly different meaning of the quantitics
O from those formerly obtaining, in the form,
P\=2k\ A2 {0, cos 7¢} +iPZ2G, appt 2 {0, sin ¢} )
r m »

+IC22J,‘LY AT = 293, » COS T'¢h,
7 / S . i og N/ < ’ 1 7 e (33)

oA 2p 2 {0, sinrg ) +EG, 2 {O;, cos re}

. » w r
4 K2ZJ/M Aoy = 26,1,, » gln 7.
2 r

We shall determine the particular integral arising from one term of the right-hand
member of the first equation, writing it typlcdlly 50, e,
Asgume that

o = Ayt
and

o\ = X)\emqu
for all values of A.

Equations (88) then become
—m* Ay +2om A+ A — 2k (m X+ X )+ AE {0, cos rg } )
-+ K,'224A GM AT X)\Z e’r Sln 7"(16} -+ JZX JI"- A= z@

3, m>

(34)

— X+ 20X+ X+ 2 (mAL+A) + A2 {0, , sin ¢} _
+ZA G, A X Z {0, cosrg} 122X T = 0. )

——

There are n pairs of’equations in this form corresponding to the 7 values of A.
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As a solution we now take
A=Ay +22A O, .+ . . .,
X, =X} +22X2 6, + . . .,
with the sarﬁe restrictions as before.

Substitute in (34) and equate to zero the terms involving no 6 but 6, ,* and 6;
Then, for all values of X from 1 to n,

—m?A) —2kem X} +9:‘, o AZ: +PZAL GM,)\-F KX J,L‘,\ = %93, m,}
n "

( ’ o~ 35
—m?X}) + 2amA) +05, X)) +ZAL G+ 2K S, = 0. (35)
w p

These 2n equations can be solved by the usual processes to give the values of the-
constants A} and X). Tt is not necessary for us to work out the results in detail, it
is sufficient to note that the determinant of the left-hand members will appear as the
denominator in each case. The determinant is the following: '

—m?+ 8}, 0> K'2G’2, 1 K2G3Y Toeers K2G’,,Z_, 1 —2kem IC2J2, 1, K2J3’ T eees Kan, 1
2rem K2G,27 N C T fc»gGl,,l;l ; —mP+ 6L, <2J ,2,1 , k% /3, ooy
Oy, =mP 0%, Gy sy, Gy 5 Sy . =2k, Ky, e, K,
ICZG/L PR 2k0my s P ngg, iy K2G"7,,, s ICQJIL 9 ,——?7?/2+ 6,33, 0 ) ,3,2, vee ., » K2J ’n, 9 . (36)
Gy, o, Gy, LGy, ., —mPE0L s Ay, A g, —2km
CGh, o, G, Gy eees  2kem IS ] Lo i s, —mP O

This determinant corresponds to the denominators in expressions (24). When it
vanishes or becomes small, it is clear, as before, that the terms of the solution tend to
become large, and instability follows.

In estimating the values of F, G, H and J, which appear in the above determinant,
it is to be noted that m,/M is exceedingly small for all values of u. But the quantities
in which it appears may be large by virtue of the small denominators which are
involved. In the expression for F,, the term 3fsin (u—\) =/n may be neglected in

comparison with the first term for large values of n. Also, > 2 . !

w M 8sin® (u—2) wfn
lie between zero and ﬂl\—z ). e (,u]~—>\) T since all thQ signs are positive, if 77 is the

greatest value of m, appearing in the ring. Hence F, lies between zero and
0'0096 n*m/M in value.

In the same way the value of G, , will arise almost wholly from the first term.
The largest value it may have will be mn*/8%*M or 0°004n*m/M . E,, Hy, J,. », ', 'y and
(., are seen to be one order lower in the reciprocal of sin (u—X) =/n and therefore
may be neglected. H’, has the limit —0°0192n*m/M, and J', , the limit —0°008%’m/M.

will
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We shall assume that the number of particles in any ring is large.

It is probable

that they vary in magnitude from the infinitesimally small up to the limit given by
Maxwern. Hence the values of the expressions F,, (&, ,, Hy and J’y will vary over
a range of values, between the given limits, as A takes its successive values.

Reverting to determinant (36), we see that it may now be written

be small for those values of « that satisfy the relation
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A

a
\

| ""m2+ 8}’0 3 K2G2’1 5 K.'2G'3’ 13 sy K2G'n’1 5 -—me 5 O 3 O s Veey O
_ g
<« : T/ 27/
~ 2kem o - , 0 ,.., 0 ; =m0, A A e, E
— ‘ ‘ , .
< . Gy, =m0, Gyay ., G, 0 , —=2km , 0 ,.., O
. 277 27/
é = 0 , Zeem 0 ..., 0o -5 &, o, =m0l S, K J e
4= ‘
]
Eg G, 5 Gy, G, ..., —mPHO o, 0, 0 .., —2um
4 4 2
0 , 0 , 0 e, 2em A, A, A, —mPH O

—m*+ 0!, 0 .., 0, —2um 0o ..., 0 =0 )
2eom, 0 s ey 0 , —m*+6),, 0 s eens 0
0 , —mi+07,, ..., 0 , 0 , = 2kn ... 0
0 , 2m ..., 0 , 0 , =m0, ..., 0 L
, 0 yoeey —mMIHO] 0 , 0 S eees 2kem
) 0 s eees 2em s 0 R cees ——m2+61{0

For all conditions satisfying MAXWELL'S criterion, the quantities &, ,, J's . will be
small. So that, provided «* is not too great, the value of the determinant (37) will

This relation is satistied by those values of « which satisfy the equation

2 (—m?+ 0% ) (—m+ 0% ) —4m? = 0, (39)
—

O : where A takes all its integral values in turn. Further it is easily shown that, on any
ES 5 distribution with 7 large, —T, = §H’,. Ilence we fall back upon the same type
T O of equation as we had in the case of equal particles (equation (29)) where we replace
= w VLS by F)\.

PHILOSOPHICAL
TRANSACTIONS
OF

Instead of treating the equation (39) separately for the various integral values
of X, since n is large, we may imagine a single equation with the assumption that
F, is an arbitrary variable parameter. The determinant (37) will then be small, and
instability result for all the values of « given by (39), for all values of the parameter
Fy that exist. With a wide range of values of F, corresponding to a wide range in

- (37)

. (38)
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SATELLITES UPON THE FORM OF SATURN’S RING. 125

the magnitudes of the masses of the particles, we may expect to find a broad region
of instability. .

It can readily be shown that the condition (89) would also be produced if the
general case of unequal particles were solved for the complementary function in the
same way as has been done for the case of equal particles, which produced (29).
This work is not reproduced owing to the length and complexity of the expressions,
and also because the results are wholly contained in the condition (39) produced from
the particular integral.

§ 6. Application of the Results to the Saturnian System.
Equation (39) written out in full is
{2 (8=F)+m?} {2F?+m*} —4m? = 0. . . . . . . (40)

In this equation m is any integer and Fy may vary between zero and 0°0096n%7/M.
As the distinctions indicated by the suffix X are
now of no importance, it may be dropped. The

40
solutions of (40) will give approximately the
positions where divisions in the Ring of Saturn
may be expected. is

For any given value of F, there are four
values of «/m, two pairs equal with opposite signs.
For any given value of «/m there are two values
of ¥; one, however, being greater than the
MaxwELL limit, is excluded. The limiting value
of ¥ for real values of «fm is 0°039. This is,
of course, the same result as that found by
MAXWELL.

The relation between r/m and F is shown in
the figure, and the table shows actual numerical
values. |

We may readily assume that in the existing
Rings of Saturn there are particles of all masses
from the infinitesimal to MAXWELL'S upper limit.
These will give rise to varying values of F,
depending upon the masses of the particles
adjacent to the particle under consideration. The ,
maximum value of F is itself small compared with unity; we shall then arrive at a
limit of « by taking F = 0 in equation (40). We find thus that the boundary of a
division should occur at «/m = 1, for each integral value of m.

VOL. OCXXIL—A. T

30t

Values of /c/m
n
R

2:0r

0 00! 0:02 0-03 0°04
values of vLs or F
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126 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF
m =1 m = 2
vL; or F. k/m.
ala’. ald’,
0 1 ® 0 1 0-6299
0-01 1-0395 - 3:9336 0-0243 0-8223 0-6456
0-015 1-0639 31412 0-1534 0-7745 0-6549
0-020 1-0940 26509 0-2102 0-7349 0-6656
0-030 1-1750 2-0156 0-2810 0-6333 | .....
0-038 1-3353 15772 0-3981 0-5117
0-039 1-4424 — 04549
Remembering that x = — (o' =)™, ©’a® = o’ we find :
For m =1, w=0o, afd =0,

oo
m=2, wofd =2, ald = 062996,
m=3, ofd =%, ald =076289,
&, ala’ = 082524.

m = 4, w/w/

[Tt should be remarked that a positive value of « gives positions without the
satellite orbit, and a negative value of « gives positions within. As « appears in (40)
in the form of a square, both positive and negative forms result. We should
therefore have the same phenomena in a ring of particles beyond the satellite orbit
as we find within].

The result @ =0 implies a division of the ring at the origin. This would fall
within the planet itself. But if the zone consequent upon the variation of F is
extensive, it may extend beyond the surface of the planet and show a clearance
of particles there.

For m =2, afd’ = 062996. In the case of satellite Mimas this should indicate
the commencement of a division in the ring at distance 16'9”. CassiNT's Division
begins at 16°87” and ends at 17°64”. This agreement is very remarkable.

Reference to the figure shows that in the vicinity of «/m = 1, x increases with F.
But as « increases so does afa’. Hence the instability caused by the larger values
of F should be in positions corresponding to larger values of , that is, to larger values
of a/a’. In other words, the division should extend outwards. This agrees with the
observational data just quoted. We may then attribute the production of CAssINT's
Division to Mimas.

For n = 3, afa’ = 0'76289. :

For satellite Mimas, this should cause a division at distance 20°46”. This is just
beyond the outer edge of Ring A, which terminates at 20°01”.

Considering next the satellite Enceladus, we should find a division at the origin
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for n = 1, and at distance 21°69” for n = 2. The last is again just beyond the limits.
of Ring A.

The remaining satellites all produce instability at the origin, but the other points.
at which this occurs are outside the existing ring.

We may use the observations of the dimensions of CassiNT’s Division to determine
the maximum value of F appearing. As we have already found, the inner edge
corresponds closely to F = 0. The radius of the outer edge is « = 17'64”. Hence
for satellite Mimas afa’ = 0°65781, giving «[m = 1'0720.

If now equation (40) be solved for F, taking this value for «/m, the result is
. ¥ =00173. Hence we may conclude that I ranges from zero to 0°0173.

Using this value of F, we now proceed to the study of the roots of equation (40).
Solving, we find

: kfm = +1°0720 and «/m = +2:8917.
Take m = 1. Then
afa’ = 0'1712 and afa’ = 07535.

We may expect to find a’ clearance of particles from afa’ = 0 to 01712 ; and from
afa’ = 0°7535 to unity.

The first gives the extent of the clearance near the origin.

For the various satellites its dimensions are :

Mimas. . . . . . . . . . a= 459,
Enceladus e . ... a= 616",
Tethys . . . . . . . . . a= 780,
Dioné . e . ... a= 934,
Rhea . . . . . . . . . . a=1307",
Titan . . . . . . . . . . a=2994".

The radius ¢ = 9°34"” indicates approximately the inner radius of the Crépe Ring,
while @ = 13°07” indicates more closely the inner radius of Ring B.

Applying the second ratio, afa’ = 07535, to Mimas, we find radius a = 202"
There should be a clearance of particles from 20°2” up to the satellite itself. This
indicates with considerable precision the termination of the whole ring, which has a
radius 20°01".

These results are subject to modification owing to the effect of the oblateness of
the planet Saturn and the influence of one ring upon another. But the agreement
of theory and observation in this first approximation is sufficiently remarkable.

The interpretation of the effect of Dioné and Rhea on the inner parts of the ring
is not clear. From the theory one would expect that any satellite could affect a
clearance of particles from the origin up to a radius given by afa’ = 0'1712. In that
case Titan, the largest of the satellites, should dissipate the whole of the existing
rings, for this ratio carries us far beyond the outer radius.

T 2
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There are therefore two facts to explain. First, the-existence of the Crépe Ring
within the dissipative area of Rhea, and second, the existence of the bright rings
within the dissipative area of Titan. In connection with the first, LowELL has noted
-a definite black band within Ring B, so that there is a clearance of particles between
the Crépe Ring and the bright rings. It would appear as though the dissipative
power of the satellites was only effective near the outer boundary of the unstable
-area about the origin. To discuss this, let as examine the analytical results.

It has already been pointed out how very small the exponent ¢ is, as given by (18),
indicating a very slow rate of dispersion. Consider, instead, the numerators of the
expressions (24), the vanishing of the denominators of which causes the instability.
‘The numerators are small because of the quantities 6, ,, and 6 ,. In the case under
«discussion, m = 1. From (5)

4 d() ’
93,1 = V%' {d—l -—1},
O, = Vi? {/c’%b ’4/3}.
Using the well-known expression for b,,* we find
63,1_.__.,/2//3{9 2+220t+ }
= o o—1}2 { et + 32505+ ... )
05,1 = Vi {a (e + o’ + fifh e’ ) —a®}
=/ {o/fo—1}7? {§a'+ 5 a’... ).

For small values of @, o'[w is small, and the value of ('fw—1)~? will be greater than,
but not far from, unity. Hence the values of ©,, and O,, depend approximately
upon the fourth power of a or afa’. It is clear then that the numerators in (24) will
be vanishingly small except for the larger values of a/d/.

The physical meaning is that, while instability will always take place when the
denominators vanish, the rate of dissipation will be small except for the largest values
of @ which are permissible. There will also be a uniform grading in the rate of
dissipation as a increases.

Applying this result to the case of Saturn s satellites, we may expect to find
actually a clearance only near the outer limits of the areas under consideration. The
areas of clearance of the first three satellites fall within the body of the planet.
Dioné causes the clearance between the surface of the planet at 865”7 and 9°84”,
which is approximately the commencement of the Crépe Ring. The limit of the area
of clearance of Rhea is 13'07”, and only near that boundary is the action effective,
the Crépe Ring being undispersed in the weaker part of the field. The bright rings
are clearly in the weak part of Titan’s field of clearance, and so continue to exist.
It is obvious, however, that with passage of time the Crépe Ring will be dispersed
by Rhea and the whole by Titan.

* TISSERAND, vol. i, p. 272.
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We have found the maximum value of F appearing as 0°0178. It was previously
shown that the limiting value of F was 0°0096n°m/M. Hence

0°00967%7/M = 0°0173,
which gives
e 070173
AL = 55096

= 1'8/n’.

That is, the size of the largest particles is just below that given by MAXWELL's
criterion, '

§ 7. Summary and Conclusion.

(1) Assuming that a planet is surrounded by concentric rings of particles performing
approximately circular orbits when unperturbed, and that the influence of one ring
upon another may be neglected to a first approximation, the effect upon these rings
of a satellite performing also an unperturbed circular orbit is discussed.

If the particles in the rings are all equal, it is shown that we should expect,
in certain places, large perturbations to take place, such that the particles in a
particular ring would leave that ring and mingle with those of other rings, and so
leave a ““division.”

(2) As there is no reason to believe that the particles in any ring are all equal, the
analysis is extended to cover the case of unequal particles.

We agsume that in any ring the number of particles is large, and that therefore we
shall probably have one specimen at least of all particles from the smallest to
the largest.

It is then shown that the divisions would become more extended, and therefore
more readily visible. “ ,

(8) On the supposition that some of the particles at any rate are indefinitely small,
we obtain CassiNr's Division at once. On making use of the dimensions of this
division to estimate the greatest magnitude of the particles in any ring, we find the
following results :— )

Satellite Mimas should produce a clearance of particles from radius 20°2” up to
itself. The ring should therefore terminate at 202”. Observation shows that it
terminates at 20°01”.

Satellite Mimas should produce a division from radius 169" to 17°64”. (This last
measurement was used as a datum for estimating the magnitude of the greatest
particles.) Observation gives the limits of Cassint’s Division as 16'87” and 17°64".

Satellite Dioné should produce a clearance of particles from the region of the
surface of the planet up to radius 9'34”. The Crépe Ring is observed to begin with
a diffused edge at 10°83". '
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Satellite Rhea should also produce a clearance of particles up to radius 13°07”.
The inner edge of Ring B is observed to commence at 13'21".

The existence of the Crépe Ring in a dissipative area is also discussed.

(4) By the inclusion of the effect of the oblateness of Saturn and the influence of
one ring of particles upon another these results might be still further improved.

The theory presented therefore gives a closely quantitative account of the salient
features of Saturn’s Ring. The numerous smaller divisions observed by LowEgLL and
others are not accounted for ; but, for the reasons given in §4, their existence is not
excluded.

(5) The dimensions of CassiNt's Division show that particles of all sizes up to a
limit just short of that imposed by MaxwrLL for stability exist in the rings.

Appendiaz on the Data of the Problem.

I. Dimensions and divisions of the ring in seconds of arc at mean distance® :—

Distance from centre of planet to—

Inner edge of Crépe Ring . . . . . 1083
Inner edge of Ring B . . . . . . 1300/
Bt. . . . . 1339

B2. . . . . 1404"

Divisions of Ring B < Bs. . . .. uvd
B4, . . . . 1532

B5. . . . . 1569

B6 . . . . . 1595

Outer edge of Ring B . . . . . . 1687
“Inner edge of Ring A . . . . . . 1764"
Division m Ring A . . . . . . . 1900
Outer edge of Ring A . . . . . . 20017
II. Equatorial diameter of Saturn . . . . . . . 17°30"

I1I. Elements of satellites :—

Mean distance. as fra,ctiolzli ih)sfs Saturn.
Mimas. . . . . . . . 2682 7.1078
Enceladus . . . . . . 34°43" 25.1078
Tethys . . . . . . . 42'66" 11.1077
Dioné . . . . . . . . 54°59" 187 .1077
Rhea . . - . . . . . 76'38" 4.10°°
Titan . . . . . . . . 174'8” 21.107*

* LoweLL, ‘ Observatory Bulletin,” No. 68, and “ Lecture” on April 26, 1916, in ‘Journal of Royal
Astron. Soc. of Canada.’
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